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Abstract 

The quantum chemical and mathematical background and some new approaches to 
the modeling of solvent effects are described. 

1. Introduction 

Solvent effects modulate a number of phenomena in physics, chemistry and 
biology [ 1 -7].  Their theoretical treatment has followed two different but complementary 
lines of thought. One blend of theory targets observable quantities, e.g. a direct 
evaluation of the solvation free energy and/or excitation energy; this domain, known 
as solvation theory, has recently been discussed in a book edited by Dogonadze 
et al. [5]. In the other type of scheme, known as the solvent effects theory, the 
attention focuses on the system's electronic wave function or its classical (intra) 
molecular degrees of freedom to determine the extent the surrounding medium 
affects either of  them; the changes produced on the structure, molecular and/or 
dynamical properties of the small system by its embedding in the medium are 
usually measured with respect to the system in vacuo; the approach has quantum 
chemical connotations that makes it suitable for studying chemical reacting systems 
at a microscopic level [6,7]. 

Solvent effects theory has advanced along two different, albeit convergent, 
lines. In one of them, emphasis is placed on quantum mechanical aspects to represent 
the solute (or system of interest), while the surrounding medium is modeled at a 
classical physics level. In the other one, the representation of the solute and surrounding 
medium is made with the help of classical statistical mechanics techniques; this 
approach has benefited from the development of  computer-assisted Monte Carlo 
(MC) and molecular dynamics (MD) simulation schemes; quantum mechanics, when 
it is employed, serves to generate information on intermolecular potentials, charge 
distributions or any other relevant molecular information. Here, the fundamentals 
of these two brands of  theory are examined and selected applications discussed. 

The quantum mechanical theory of solvent effects on the electronic structure 
is presented from a unifying viewpoint: the generalized self-consistent reaction 
field (GSCRF) theory. Related schemes are derived from GSCRF theory. The classical 
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statistical mechanics scheme is used together with the quantum mechanical approach. 
The former employs projected Liouvillians for describing the system of interest 
coupled to a thermal bath [8,9]. Such a formulation is conceptually adequate to treat 
solvent effects [10] in conjunction with the GSCRF theory. 

2. Quantum approach to the theory of solvent effects 

For a molecule, or any well-defined subsystem, e.g. a model active site in an 
enzyme, the solute and surrounding medium are represented by the particles' (nuclei 
and electrons) Hamiltonians H,( L, R~) and Hm(r m, Rm), respectively, and the interaction 
operator V~,,, = V(r,, rm, Rs, Rm), and are well known [7, 12- 14]. The latter, in the 
Coulomb gauge [14], is the electrostatic interaction between all charges in the 
system and can be written with the help of charge density operators (~) as follows: 

V,,~ = f d rf dr'~2s (r)T(r - r')~2m(r' ), (I) 

where T ( r -  r') = 1/ Ir-  r'l is the Coulomb kernel [15], and the subsystem (solute) 
charge density operator in atomic units is defined by: 

f~s(r) = -~., 6(r - ri) + ~., Z~iS(r - Rsi ), (2) 
i si 

with a similar expression for the solvent charge density operator f2m(r). In these 
equations, ri stands for the ith electron position vector operator: R,i is the position 
vector of the solute sith nuclei; Z~,. its corresponding nuclear charge; 6(r) is Dirac's 
delta distribution and dr  is a volume element in real space (IR3). The electron 
coordinate operators for each subsystem rs and rm and the nuclear vector position 
coordinates of each subsystem Rs and R,. are embedded in the definitions of f~. 

The starting electrostatic Hamiltonian H describing the total system of electrons 
and nuclei is then: 

H = Hs(rs,Rs)+Hm(rm,Rm)+V(rs,rm,Rs,R.,); (3) 

the wave function u?( L, rm; X) of the global system and its energy E are obtained, 
in principle though not in practice, by solving the SchrCSdinger equation: 

H W(rs,rm;X))= ElVe(rs,rm;X)). (4) 

The dynamics of the nuclei is driven by a Hamiltonian H(Rs, R,,) which is obtained 
after quantum averaging over the electron coordinates with W(rs, rm;X): 

H(Rs, R.) = H (Rs) + H.(R.) + V(Rs, R.). (5) 

The electrons provide now with a potential energy function for the nuclear motions 
and the inter-system potential energy V(Rs, Rm) is given by: 
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v(IL,em)= 

(6) 

When the separability hypothesis holds, this equation can be rearranged to show, 
explicitly, the classical electrostatic interactions between both subsystems and the 
Coulomb exchange interactions which am responsible for short-range repulsive 
forces between closed shell electronic systems. 

The problem resides in the calculation of the wave function for the solute in 
the presence of the surroundings. Assuming the wave function for the solute, 
• s(r,; Rs, R,,), and surrounding medium, ~,,,(rm; R,,,, Rs), are known at a given instant 
t and with a given nuclear configuration X = (R,,, Rs), an approximation to the total 
wave function can be written down: °d(rs, r,,; X) = A,,,,q's(G; R~, R,,) ~,,,(rm; Rm, Rs), 
where Asm is an antisymmetrizer operator between electrons from these two groups 
s and m. The total Hamiltonian is symmetric to any electron permutation. The 
expectation value of H with the particular ansatz for ~(G, r,,;X) is given as: 

( As,~q's(rs;Rs,R~)qJrn(r~; Rm,Rs) lHlAs,~Ws(rs; R~,Rm)qJ,~(rm; Rm,Rs)) 

=(qJs(rs;Rs,Rm)qJm(rm;Rm,Rs)lHlAsmUfls(rs;Rs,Rm)Wm(rm;Rrn,Rs)), (7) 

since H and As,~ commute and AsmAsm = Asm. Bearing in mind that the antisymmetrizer 
can be written as a sum of the identity operator 1 and non-trivial permutations P,,~, 
the interaction term Wsr n c a n  be cast into: 

Vsm = (WsWm [ ; d r ;  dr'~s(r)T(r-r')~2m(r')lWsWm) 

+ (V s °dm l ; dr; dr'~2 s ( r )T(r -  r')(~2 m (r ') ] Pros u? s W m ), (8) 

which contains in its first term the complete electrostatic interactions between both 
subsystems including inductive (polarization) effects, since the wave functions for 
the subsystems are in principle obtained as solutions of effective Schr6dinger equations 
where both parts are interacting. The second term contains electron exchange effects. 

The ansatz used above for the wave function does not contain electron correlation 
and charge transfer effccts among both subsystems. The former are second-order 
effects, while the latter are first-order effects in perturbation theory language. In the 
construction of effective Schrtidinger equations, both are neglected [6, 7]. This type 
of second-order effect is responsible for the universal Van der Waals attractive term 
which has to be added to V(R~, Rm) in eq. (6) when treating the dynamics of the 
nuclei. 

If solute to solvent charge transfer effects are important, the quantum subsystem 
has to be defined in such a way so as to include those solvent molecules participating 
in the transfer. In this manner, for this approach to be valid, one assumes that there 
is no charge transfer between the subsystems. 
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2.1. GENERALIZED SCRF THEORY [16] 

The construction of an effective Hamiltonian 5(, implies separability of the 
total wave function ~t' into an antisymmetrized product of wave functions for each 
subsystem since electrons from both groups are indistinguishable. For closed shell 
electronic systems, exchange interactions due to the Pauli exclusion principle, which 
are included in the antisymmetrization of the total wave function, are responsible 
for molecular shapes. Explicit antisymmetrization of the total wave function is 
avoided by including the resultant repulsive forces as interatomic potential functions 
to the configurational space potential energy term V(R~, Rm) in eq. (6). Analogously, 
the instantaneous electron dipole-dipole  corrections between the subsystems are 
included as standard Van der Waals potentials in the statistical mechanical treatment. 
Under these assumptions, the product wave function can be given a Hartree form: 
W = U?s(rs; R s, Rm)qJm(rm; Rm, gs). By taking the quantum average o v e r  U~m(rm; Rrn, gs) 
of the total Hamiltonian H and neglecting the self-energy of the surrounding medium, 
an effective Hamiltonian .9~ is obtained: 

Hs(rs;X =H,C ,Rs)+ dr dr'ns(r)(a'r, lT(r-r')nm(/)l%). (9) 

The expression for the interaction between both subsystems can be cast into 
a form where the charge density of the surrounding medium p,,, = Sdr'(W,,Inm(r')IWm) 
appears explicitly. The interaction Hamiltonian now describes the coupling of the 
solute charge density operator with the electrostatic potential created by the surroundings 
at fixed X: r~ ( r )=  Sdr'(W,~lT(r-r')f2m(r')lqJ,,). Tiffs potential V,,(r) fulfills the 
classical electrostatics Poisson equation: V~Vm(r)= pro(r). 

The effective Hamiltonian (9) acquires the simple physical form: 

5[s(~;X) = Hs(rs,R~)+Idrf2~.(r)V,,(r;X ). (10) 

For each nuclear configuration, the solute wave function u?~ and the effective energy 
E,(X) are obtained as a solution of the effective SchrOdinger equation: 

H lvs)-- (11) 

Equation (10) is not very useful unless the solvent charge density could be 
given a tractable form. This goal can be attained if one realizes that the solute can 
be taken as a classical external electrostatic source to the surrounding medium. For 
this approximation to be accurate, the solute wave function must be fairly well 
localized in the volume assigned to the solute system; overlap with the surrounding 
medium must be minimal. The condition is fulfilled when the system of interest is 
defined as discussed above. 

Let p°(r) be the classical charge density of the surrounding medium in the 
absence of the solute field. The total solvent charge density is obtained by adding 
to p°m(r ) the polarization charge density p'(r) set up by the solute electric field e(r). 
This latter density is the divergence of the polarization vector p(r) [17]: 
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pro(r) = p°m(r)- V r • p(r), (12) 

where V r is the gradient operator at r. Note that the polarization density p at the 
boundaries and outside the macroscopic volume occupied by the solvent is zero. 
The effective Hamiltonian eq. (10) acquires an implicit nonlinear structure via the 
polarization density term: 

H s = H s + fdrf2s(r)[V°m (r)+ [. d r ' T ( r - r ' ) ,  p(r ')],  (13) 

where T ( r -  r ')  = V , T ( r -  r') is a unit electric field at r '  produced by a unit charge 
at r. The term 

I-l(r) = f dr 'T( r -  r') . p( r')dr" (14) 

is the reaction field (RF) potential at the point r in the volume occupied by the 
solute. V ° is the potential acting on the quantum system that is generated by the 
surrounding medium charge density. V°(r) and Fl(r) must now be operationally 
determined. 

2.1.1. Surrounding potential 

V°(r) is obtained from model charge densities representing the atoms or 
molecules in the solvent or surrounding medium. There are several model charge 
densities currently available. For proteins, Warme-Scheraga effective charges for 
the amino acid residues have been used in studies of enzyme catalyzed reactions [7]. 
Current MD or MC program packages [ 18, 19] have model point charges to calculate 
electrostatic interactions. They result from fittings of empirical data [18-21 ]. Potential 
functions for water based on ab initio calculations have also been produced [22]. 
The construction of intermolecular potentials is still a very active field [22-24]. 

2.1.2. Reaction field potential 

The polarization vector can be obtained from model solvent response functions 
without resorting to a multipolar expansion. In this way, the effective Hamiltonian 
can be cast as a functional of the solute charge density, thereby expliciting the 
nonlinear structure of the Hamiltonian eq. (13). 

In the classical electrodynamics framework, let X(r) be the static response 
tensor to the external electric field e(r). In the present case, the field is produced 
by the solute charge density ps(r ' )= (Wsl~(r ' ) lq '~)  and is given by: 

e ( r ) = - V  r fdr 'ps(r" ) T ( r - r ' ) = - f d r ' p s ( r ' ) T ( r - r "  ). (15) 

The polarization density is then: 

p ( r ) =  X(r)- [e(r) + j" dr '  T ( r - r ' ) .  p(r ')],  (16) 
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where T ( r -  r ')  = V r T ( r -  r ' )  = VrV~T(r-  r ' )  is the dipole-dipole interaction tensor. 
The integration can be carried out over the whole volume occupied by the surrounding 
medium while avoiding the singularity by an appropriate cutoff; in practical schemes, 
this is never a real problem [7]. Equation (16) is iteratively solved and, by introducing 
the surrounding medium response tensor C(r, r ' )  defined by: 

C(r, r ' )  = X(r). [1 •(r-  r') + T(r - r')- X(r') 

+ I d r " T ( r  - r"). X(r"). T(r" - r'). X(r') + ...], (17) 

where I is the unit tensor, the polarization density is cast into a compact form 
resembling the one used in the electrodynamics with spatial dispersion [7]: 

p(r)  = I d r'C(r, r'). e(r'). (18) 

This equation emphasizes the non-local response of the medium towards the solute 
(external) field. 

The reaction field contribution to the interaction Hamiltonian is given by: 

V R F = f d r ~ s ( r ) f d r ' f d r " I d r " ' T ( r - r " ) . C ( r " - r ' " ) . T ( r " ' - r ' ) p s ( r ' ) ;  (19) 

the integration variables r and r '  are points associated only with the solute system, 
while integration over r" and r"" is over points associated with the solvent system 
only. Thus, defining an RF kernel function, 

G( r ,r ' )  : I dr"  f dr" 'T(  r -  r") . C( r" - r"')  . T(r" ' -  r'), (20) 

the effective Hamiltonian of eq. (13) is now cast into its final form by using eqs. 
(16) to (20)" 

(21) 

Note that this Hamiltonian depends upon the solute charge density. 
The solution of eq. (11) with the Hamiltonian eq. (21) has to be made self- 

consistent. This condition is independent of the quantum chemical approach used 
for constructing the wave function. 

Once the solution has been found, at the end of the self-consistent calculation, 
the total energy of the solute W, is obtained by adding to E~(X) the energy required 
to polarize the surrounding medium: 

w ,  = E,(x) - (1/2)(% ] J" dr aAr)J" drY(r,/)ps(/)1% ). (22) 
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The general form of the RF attained in the present theory, namely, 

Fl(r) = ~ dr'G(r, r')p(r'), (23) 

shows an explicit functionality on the solute charge density. However, eq. (14) is 
better adapted for algorithmic developments. 

The theory described thus far [16, 25] is well suited for designing computation 
schemes coupled to MC or MD simulations of the surrounding medium. MC and 
MD provide information on the global configuration X. Once X is known, V°(r) and 
C can be evaluated provided a solvent charge density and external field susceptibility 
are given. These problems have already been solved in the framework of the 
inhomogeneous SCRF theory [7, 25]. At the quantum chemical level, matrix elements 
over one-electron operators are required. However, there is more in this approach, 
since different types of theories can be obtained for varied choices of  C-tensors. 
This is the point where a microscopic approach to the surrounding medium can be 
used. Another possibility is open to the practitioners if the dielectric theory is 
chosen. The latter procedure allows for derivations of the continuum models as 
particular cases of a generalized dielectric theory. 

2.2. STATISTICALLY SIGNIFICANT GSCRF THEORY 

The connection with standard solvent effect theories must be made after a 
statistical mechanical averaging over the solvent configurations. Temperature enters 
here in a natural manner. 

Since the solute-solvent interaction Hamiltonian does not depend upon particle 
momenta, the statistical averaging is carded out over the configurational space; it 
will be designated by angular brackets ( . . . ) .  A fixed molecular reference frame 
is assigned to the solute by using, for instance, its nuclear equilibrium configuration 
Rs. Following Kirkwood, an averaging over the entire solvent configuration is 
performed while the solute is kept at a fixed orientation defined by the Euler angles 
with respect to a fixed molecular frame [6]. This averaging is designated by the 
angular brackets with a subscript m to indicate this fact. 

2.2.1. Polarization density 

Let us consider first the statistically averaged polarization density: 

(p(r; X) )m = ~ dr" ( C(r,r';X) . e(r'; X))m; (24) 

the integral over spatial coordinate r '  can be rigorously taken out of the averaging 
integration. Introduce the statistically averaged response tensor (C(r, r ' ;  X)) = (C)r,, 
and electric field (e(r ' ;  X)),,, = (e)m. One calculates the fluctuation correlation vector 
function: 
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(6C. 6e)m = ((C(r,r';X)-(C)m). (e(r';X)- (e)rn))m. (25) 

At thermodynamic equilibrium (in Feynman's sense, namely, all fast things have 
happened while the slow ones have not [26]), (6 C • 6e)m fades away and we have: 

((C(r, r'; X). e(r'; X)),,, = (C),,, • (e),,, (26) 

and eq. (24) can be uncoupled: 

(p(r; X)),,, = f d r '(C(r,  r'; X)),,, • (e(r'; X)),,,. (27) 

This relationship indicates that, at thermal equilibrium, the surrounding medium 
will react to the averaged solute electric field. Note that if we average over the 
orientation of the solute, the r.h.s, of (24) cancels out. The theory described in this 
subsection is of the mean field type. 

The statistically averaged reaction field susceptibility (G(r, r')),,, can also be 
uncoupled following a reasoning similar to the one above. Thus, 

(G(r,r'))m = f dr"f dr"" T ( r -  r"). (C(r",r"')) m • T ( r" ' -  r'), (28) 

and the RF becomes a response of a statistically averaged susceptibility tensor 
(C(r",  r"')),, .  This enitity is temperature and pressure dependent. 

2.2.2. Solvent potential 

The averaged solvent electrostatic field (V°(r))m is important for describing 
inhomogeneous media, such as enzymes, membranes, miscelles and perturbed crystalline 
environments. Due to the existence of strong correlations, such a field may not 
cancel out after averaging. This factor becomes an important contribution to solvent 
effects at a microscopic level. In a study of non-rigid molecules in solution, Sese 
et al. [27] constructed a (V°(r))m by using the solute-solvent a tom-atom radial 
distribution function. Electrostatic interactions in three-dimensional solids were 
treated by ,/~ngy~in and Silvi [28] in their self-consistent Madelung potential approach; 
such a procedure can be traced back to a calculation of (V°(r)),,. In an earlier 
application of the ISCRF theory to the study of proton mechanisms in crystals of 
hydronium perchlorate, both (V°(r))m = (V°m(r; (X)) and the RF potential [29] were 
computed. Another example was provided by the calculation of the electric field 
produced at the active site of alcohol dehydrogenase by the protein atoms surrounding 
it [25]. 

2.2.3. Averaged GSCRF equation 

In the mean field approach, a statistically significant effective Hamiltonian 
is obtained by m-averaging ( ( . . . ) m )  [6] eq. (21): 
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5(s={Hs÷~dr~s ( r ) [ (V° ( r ) ) , .+~dr" (G(r , r ' ) )m(ps ( r ' ) ) . ] } .  (29) 

The key step here for constructing a simple SCRF Hamiltonian is to replace 
the m-averaged solute charge density ((Ps(r'))m) by the expectation value of the 
solute charge density operator with respect to a new wave function Os, i.e. 
(p,(r'))m = (~,  I ~ , ( r ' )  I~,), this wave function is now an object replacing an ensemble, 
and it is obtained as a solution of the effective Schr6dinger equation with Hamiltonian 
eq. (30): 

This effective Hamiltonian represents a solute system in thermal equilibrium with 
respect to all the degrees of freedom except its orientation. This assumption is 
congruent to the mean field approach. Under this hypothesis, the effective Schr6dinger 
equation has the same form as in the generalized SCRF theory presented in the 
preceding section. The interpretation is fundamentally different in both ~cases. 

An explicit formulation of Hamiltonian (30) is obtained if (G(r, r'))m is 
replaced by eq. (28): 

• " .... . T ( r " ' - r  ) ( O s l ~ ( r  ) l ~ ) ] )  (C(r ,r  ,X)) m ' ' , (31) 

where the dependence of both the charge density and the averaged response tensor 
is explicitly shown. This is the fundamental Hamiltonian of the statistically significant 
GSCRF approach. The effecive Schr6dinger equation: 

H s l ~  s ) = Es( gs: T)lc~ ~ ) (32) 

depends upon the surrounding medium temperature T. 
The generalized SCRF theory can now be used in several different ways. One 

makes use of the knowledge provided by MD and/or MC statistical mechanical 
simulation procedures on the statistical distribution of X. Thus, for systems having 
a well-defined average structure, as for instance a native enzyme, (C(r", r"';  X)),,, 
= C(r", r"'; (X),,). It is also possible to replace the theory into the framework of 
the electrodynamics of dielectric materials. In this case, (C(r", r"'; X)),,, is represented 
with the help of the static permittivity tensor. In the next section, the microscopic 
approach is examined first and thereafter the dielectric approach. 

2.3. MICROSCOPIC APPROACH 

In the discrete microscopic model, the theory is completed with a recipe to 
calculate the surrounding medium response to an external field, i.e. C and the 
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permanent electrostatic potential V°(r), which is different from zero for an arbitrary 
X-configuration. 

The solute electric field at a given instant of  time, at a fixed geometry, is 
coupled via the static polarizability to the surrounding medium. Thus, if the environment 
of  the solute is represented as a set of  discrete atomic and group polarizabilities 
{o~,,,t}, the tensor X(r) can be written as [7, 16, 17,23,29]: 

X(r)  = ~ a,,,i•(r - Rmi), (33) 
mi 

where the summation is carried over the atoms, molecules or functional groups in 
the molecular environment. For a solute surrounded by a sample of solvent molecules, 
e.g. water, configurations X generated in Monte Carlo or molecular dynamics 
simulations can be used to calculate explicitly eq. (18) for the polarization density 
p at each point in the sample. Taking supervector notation, p is in this case a vector 
of  dimension equal to the number of points (m) representing the solvent system: 
pT = ( P l ,  P2, P3 . . . . .  Pro). pT is the transpose of  the column vector p. The tensor C 
becomes a supermatrix: C ( r  i, I"/), where i and j run from 1 up to m. Each matrix 
element is a second-order tensor given by: 

C(r  i, r]) = ai . [S i j  + T(r~ - r]). a j  + ~ T(r  i - r k) .  tr k • T(r  k - rj ), a j  + , . .  1. (34) 
k 

The terms in square brackets can be formally summed up since they form a geometric 
progression: 

Pi = ~. ,C(r i , r j  ) " e(rj)  = °ti " ~.~[ Sij - T ( r / - t ~ . ) .  a j ]  -1 .e(rj) ,  (35) 
J J 

or, using a supermatrix notation, one can rewrite eq. (35) as follows: 

p = a . [ 1 - T .  •]-1. e = [ 1 - a . T ]  -1. a .e, (36) 

where e T = (el,e2,e 3 ..... era) = (e(rl) ,e(r2),e(r3) ..... e(r~)); the nonzero elements of the 
supermatrix ~x are the diagonal group matrices ui, the supermatrix T has the 
diagonal elements equal to zero. 

Equation (36) is a well-known formula. This equation can be implemented 
to obtain the induced dipole at each point in the surrounding medium as it is 
produced by an electric field whose source is the solute system. The many-body 
polarizability supermatrix A is defined as 

A = [ 1 -  o~. T] -1. ~x, (37) 

and the polarization density is again given a form similar to eq. (18), namely, 

p = [ 1 -  a .  T ]  -1  . a .  e = A • e .  ( 3 8 )  
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Matrix inversion is a cumbersome procedure, in particular for matrices having a 
very large dimension. To avoid this problem, an iterative procedure can be devised 
to calculate the many-body polarizability supermatrix A which follows from the 
self-consistency relationship applied to eq. (37), namely, 

A = t ~ - c t . T . [ 1 - t ~ . T ]  - 1 . c t = a + c t . T . A .  

Defining now A (°) = O, one obtains: 

(39) 

A Cn) = o~ + cx. T .  A Cn- 1), (40) 

from which one can obtain the second identity in eq. (38) as an iterative scheme: 

p(") = (ct+ ct. T .  A ("-1)) • e, (41) 

and e is the field external to the polarizable domain. These equations are solved 
iteratively to obtain the induced dipole at each point in the surrounding medium as 
it is produced by an electric field whose source is the solute system. For the nth 
iteration, one has: 

(42) pC,) = a .  (e + T pC,- 1)), 

with p(0) = O. In this case, there is no need to invert large matrices and the procedure 
is computationally more efficient. Convergency is usually attained in three to five 
iterations. 

Note that in the quantum mechanical treatment, e is self-consistent in the 
sense that it is calculated with a self-consistent wave function. As emphasized 
above, this field is external to the polarizable domain. For a classical set of  fixed 
charges and induced dipoles, the components of  e are electric fields whose sources 
are the fixed charges, each one of them being external to the remaining polarizable 
domain; it is the supermatrix A which takes care of  the full induction. 

2.4. GSCRF THEORY IN THE DIELECTRIC APPROACH 

In the electrodynamics of dielectrics, an electric induction vector D(r) and 
a dielectric polarization vector P(r) are introduced for describing the fields acting 
in the medium [17]. Correspondences between these objects and those coming from 
the GSCRF theory are established below. 

The averaged polarization density (p(r)),,, corresponds, by construction, to 
P(r). The assignment of  (e(r)),,, is more delicate. In standard electrodynamics, the 
external sources are not perturbed by the dielectric medium. If such were the case 
here, there would be no effective SchrOdinger equation including reaction fields; 
first-order perturbation theory would be enough to calculate interaction energies 
between the solute and the medium. Since (e(r)),,, results from reciprocal inductive 
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effects, the polarization effects are built into the "extemal" charge density. Thus, 
it is more natural to assign this field to the electric induction D(r) when 
the self-consistent wave function is used to calculate it. Thus, at self-consistency, 
eq. (16) becomes a relationship between the polarization density and the electric 
induction: 

P(r) = I dr ' (C(r ,r ' ) )m.  D(r'). (43) 

The statistical mechanical averaging of  C introduces correlations related to 
all molecular motions in the solvent that are allowed to relax until attaining thermal 
equilibrium. It is natural to seek a function of the static permittivity tensor e(r, r ')  
to represent the averaged response function. In the absence of polarizable matter in 
the surroundings, the averaged tensor (C(r, r')),,, = 1 t~(r, r ') ,  the presence of  a 
dielectric screens the interactions with a functional dependency e-l(r,  r ' )  so the 
averaged susceptibility tensor is: 

(C(r, r'))m = 1 8(r, r ' )  - e-l(r, r'),  (44) 

where e-l(r, r') is the inverse of the static permittivity tensor, the statistical mechanical 
averaged polarization density now satisfies standard electrostatic equations for media 
having spatial dispersion, namely, 

P(r) = D(r) - I d r '  I~ - l ( r , r ' ) .  D(r'). (45) 

Note that the last term corresponds to the electric field of the sources as if it were 
in vacuo: E(r) = Sdr 'e- l ( r ,  r')  • D(r') .  Thus, the standard electrostatic relationship 
between the displacement and external field is recovered: D(r) = E(r)  + P(r). The 
internal consistency of the present theory is therefore ensured. 

The generalized self-consistent reaction field equation in the dielectric approach 
now reads: 

{H, + I drf2~(r)[V° (r))m + I dr" T ( r - r ' ) .  I dr"[15(r'-r")-~.-l(r'.r")] D(r")] } 1@,) 

= U , (RDICs ) .  (46) 

For homogeneous environments only, (V°~(r))m averages out to zero. For liquids, if 
a very structured solvation shell remains around the solute, it is convenient to 
introduce this region (cybotactic region) into the definition of the solute and treat 
the surroundings as homogeneous. 

The effective SchrOdinger eq. (46) has the most general form among those 
proposed in the literature to represent solvent effects in the dielectric approach. As 
a matter of fact, the effective Hamiltonian eq. (46) contains those as special cases. 
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2.4.1. Continuum approach 

In the continuum approach to the surrounding medium, one has to set up by 
definition (V°(r)),,, equal to zero. Medium effects are therefore represented by a 
reaction field term in eq. (46). Three types of environment can be represented in 
this framework: (i) an anisotropic medium without spatial dispersion, where the 
permittivity tensor is defined with the ansatz: e ( r -  r ' )  = e(r) t~(r-  r ');  (ii) an isotropic 
medium which is characterized by e(r - r ' )  = e(r) 1 t5 ( r -  r ') ;  (iii) a homogeneous 
and isotropic medium, the permittivity tensor is the unit tensor multiplied by the 
static dielectric constant e. All these models lead to a distance-dependent dielectric 
representation. Now, the effective Schr0dinger equation for each case is obtained 
from eq. (46) after integration over the r '-variable with the corresponding ansatz 
for the permittivity tensor. 

2.4.2. Cavity models 

The cavity immersed in a continuum dielectric continues to attract attention 
from quantum chemists trying to incorporate solvent effects in their in vacuo 
calculations [30-44].  Cavity models in a continuum dielectric follow in a simple 
manner by directly modelling (C(r, r'))m. 

Let r c be the cavity radius and V' the sample volume where the spherical 
cavity containing the solute has been cut out. For a homogeneous isotropic dielectric 

in eq. (23), (C(r", r ' ) )m can be written as: (1-e-1)®(r"-rC)~9(r" ' -rC)6(r"-r" ' ) ,  

where O ( r " - r  ~) is the Heasivide step function, i.e. it is zero inside the cavity and 
one outside and at its boundary. The RF potential can then be cast into: 

(1 - e - 1 ) f  dr" T ( r  - r") .  O(r"  - r c ) f  dr"" O(r"" - r e) ~(r" - r"' ) .  D(r"') .  

The inner integral can be carried out straightforwardly as r" and r " '  run outside the 
cavity, thus, 

H(r) = (1 - e -1 ) fd  r" O(r" - r e) T(r - r"). D(r"), (47) 

and introducing the quantum mechanical definition of the solute field, one finally 
obtains: 

H(r)=(1-e-1)~dr ' [~dr"O(r"-rC)T(r -r" ) .T(r" -r ' ) lPs(r ' ) .  (48) 

This equation contains the basic model used to study the solvated electron (see ref. 
[7] for a discussion). If the charge density is replaced by a classical unit charge at 
the origin of  the sphere, the RF potential obtained after integration of  eq. (48) 
corresponds to the Born model for a metallized sphere immersed in an isotropic 
continuum. 
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The model using spherical harmonics expansions for the RF potential can be 
derived from eq. (48) by introducing spherical boundary conditions. The procedure 
has already been outlined by the present author [6] and will not be repeated here. 

2.4.3. Semi-continuum models 

In this type of approach, the first solvation shell is represented in the 
supermolecule and, consequently, enters into the quantum chemical description. 
Basically, the radius of the sphere embedded in the continuum dielectric is much 
larger than for the desolvated solute. This model has been used on several ocassions, 
e.g. solvated electron, electron transfer in solution and in the study of solvent 
effects on the transition structure for the hydride transfer step in the catalytic 
mechanism of liver alcohol dehydrogenase [39]. 

Recently, two developments have taken place in this field: one concerns the 
quantum chemical level used to solve open shell electronic structures [40], the other 
is an extension of the homogeneous model to treat an anisotropic surrounding 
medium [41]. 

The level of electronic structure theory used by Mikkelsen et al. [40] corresponds 
to the multiconfigurational (MC) self-consistent field (SCF) where the wave function 
is fully optimized with respect to all variational parameters; these include orbital 
and configurational parameters. The main deficiency of standard SCF ab initio 
procedures, namely, lack of intramolecular correlation effects, is overcome in this 
MCSCF approach. The level of solvent effects theory is the standard spherical 
cavity immersed in a continuum dielectric; an early formalism proposed by Rinaldi 
and Rivail [31] was used (see ref. [6] for a more extensive analysis). 

The contribution by Hoshi et al. addresses the formulation of a theory for the 
estimation of a molecular electronic structure surrounded by an anisotropic medium 
[41]. It is assumed there that the medium surrounding the solute system is composed 
of more than two polarizable dielectrics with different dielectric constants; the 
different dielectric regions make contact with each other through arbitrarily shaped 
boundaries. As usual, the solute charge distribution interacts with the dielectrics via 
a reaction :field. 

In a different vein, Claverie and coworkers [45] have made a significant 
effort to improve the continuum model used for calculation of solvation thermodynamics 
quantities of a molecule embedded in a cavity formed by the intersecting Van der 
Waals spheres of the solute in a polarizable medium. 

At a more elementary level, Gersten and Sapse have investigated solvent 
effects through the use of an embedded Born equation [48]. Rashin and 
Namboodiri [47] have also contributed with a simple method for the calculation of 
hydration enthalpies of polar molecules with arbitrary shapes. 

An analysis of discrete and continuum dielectric models as they have been 
applied to calculate protonation energies in solution has been presented by Rullman 
and Van Duijnen [48]. The model proposed by these authors combines a discrete 
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molecular description of the first two or three solvation layers with a continuum 
description of the bulk solvent. The solute is described quantum chemically at an 
HF level. The accuracy of the results depends on the dielectric model as well as 
on the details of the electrostatic potential and on inductive interactions. 

The simple virtual charge model discussed by Constanciel and Tapia [6, 49, 50] 
has been developed into an extended generalized Born (EGB) approach. Different 
approximations have been proposed. Constanciel [43] has analyzed the theoretical 
basis used as a foundation for empirical reaction field approximation through the 
continuum model to the surrounding medium. Artifacts in the EGB scheme have 
been clearly identified. The new approximate formulation derives from an exact 
integral equation of classical electrostatics following a well-defined procedure. It 
is shown there how to compute the wave function of solvated species embedded in 
cavities formed by interlocking spheres in a polarizable continuum. 

2.4.4. Generalized cavity models 

Equation (48) can be generalized for a cavity of arbitrary shape. Let the 
former sphere radius become a parametric function of s describing the surface 
embodying the system of interest: rC(s), including this function in the form (48) and 
interpreting the tetha function in a more general manner, the reaction field can be 
written as: 

FI(r)=(1-e-l)Idr '[  Idr"O(r"-rC(s) )T(r -r") .T(r"-r ' ) lPs(r ' ) .  (49) 

If the system of  interest occupies the volume say v, the tetha function changes the 
total volume of integration for the variable dr"  to be V" = V -  v. We then integrate 
over dr" to obtain: 

I dr"T(r - r" ) .  T ( r" - r ' )  
V' 

= Idr"d iv (T(r -  r")T(r" - r')) - ~dr"divT(r" - r'). (50) 
V" 

The divergence of T ( r " - r ' )  in the volume V" is actually zero in this model, 
and according to Gauss' theorem, the first integral is equal to the integral of 
T(r -  r") T ( r " -  r') over the surface bounding the volume of integration S'. Since 
the field is zero at infinity, this integral reduces to a surface integral over precisely 
the surface boundary u, i.e. Sv, and with the normal unit vector to the surface at 
r" designated by n(r"), eq. (49) can now be written as: 

H(r)=(1-e-1) Idr'[ Ids" n(r"). T(r"-r')T(r-r")]ps(r'). 
k s~ 

(51) 
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The electric field set up by the solute charge density can be written directly as: 

e(r")=[Sdr'T(r"-r')lP,(r'). (52) 

The reaction field potential can be cast in terms of the electric field created by the 
solute at the surface delimiting its volume: 

r l(r)  = (1 - e -1) Ids"n(r"). e(s") T(r -  r"), 
sv 

(53) 

which is the Scrocco-Tomasi-Miertus theory of solvent effects [51,52]. Tomasi's 
group have extensively used this blend of theory to treat a number of interesting 
systems [52]. In particular, the GEPOL scheme developed for calculating the surface 
and volume of any molecule [53] has been adapted to actually calculate the reaction 
field potential of eq. (53). 

2.5. MUTUALLY CONSISTENT FIELD THEORIES 

In the GSCRF theory discussed above (cf. section 2.1), only the solute is 
described by an effective Schr0dinger equation, namely, eq. (11). Instead of taking 
a classical electrodynamics representation for the solvent charge density as we did 
above, one can treat both subsystems at a quantum mechanical level. Thus, one has 
for each of them the following Hamiltonians: 

and 

H$ (rs; X) = H~(r$, R~) + S drI dr" f~(r) (WmlT(r- r')nm(r')lUdm) 

H,~(rm;X) = Hm(rr~, Rm) + S drS dr" am(r)(~F~lT(r- r')ns(r')l•) 

=H (r m R )+js 
r t l  ' I n  

(54) 

and 

where j s  and jm are the Coulomb operators used by AngyAn and N~iray-Szabo [54] 
in their mutually consistent field theory. 

One must now solve the coupled effective Schr0dinger equations: 

H,I%o> = e,o(X)l%o> 

Hml~Pm~) = E,~ (X)IW,,,v), 

(56) 

(57) 

where cr and # are quantum numbers characterizing the solute and solvent eigenstates. 
Consider the hypothetical situation where we separate out both subsystems 

while still keeping the global nuclear configuration X. One can write down a SchrOdinger 
equation for each subsystem: 

(55) 
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and 
HsltD,a) = E,a(X,)lO~c~) 

H m l O m~ ) = E ,n/~ ( X m ) I cD ,n/~ ). 

(58) 

(59) 

These sets of eigenfunctions are now used to expand the interaction operators of 
the mutually interacting system described by eqs. (56) and (57). Focusing on the 
solute system again, and to second-order perturbation level, one has for lU/mu) the 
following expansion [6, 14, 54]: 

IW-/~)=ItD,~/~)+ E lO~#')[Em#-E,,~']-'(O./~'IJSlO~/~ )' (60) 
/a'~kt 

which can now be introduced in jm tO obtain an explicit form for this operator in 
terms of the solvent unperturbed electronic properties: 

jr. = f drS dr" f~s (r)<Om#l T ( r -  r')f~m(r')I Or~) 

1-I 
+ ] <¢"U IJSlq''U ) 

q" O s -I • ~.,( mulJ lOm.')[Em/~-Em/~'] (OmU If2,~(r')T(r-r')lO,,~) 

+ higher - order terms, (61) 

introducing now the definition of J s, neglecting higher-order terms and using ./~ngy~n's 
charge density response function, namely, 

C " ( r , r ' ) =  i-I  . 
L - -  

-gmu. ] (@mu,l~m(r) l@,,,~), (62) + Z (CDm#l~m(r')ldPmlz')[Erntz -1 

the interaction operator set up by the surrounding medium acquires the form: 

J"  = f dr S dr" E~s(r)(Om~l T(r -r ' )~m(r ' ) lO.v  ~) 

+Sdrfdr 'Sdr"~dr"' f~s(r)T(r-r")Cr~(r"-r" ')T(r" '-r ' )ps(r ' );  (63) 

the second line in this equation can be recast in terms of the reaction field response 
H H I  H m U H J  H I  I function Gin(r, r') = ~dr ~dr T(r -  r )C (r - r )T(r - r ), which is the analog 

of our reaction field response function G(r, r'), eq. (20). Actually, if the Dirac 
delta functionals appearing in the definition of the charge density operator fl , .(r ')  
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(see eq. (2) which is the counterpart for the solute) is developed around R, e.g. 
r ' =  r + R [14]: 

~ ( r  + R) = S (R)  + r .  V ~ ( R )  + . . . .  (64) 

using adequate expansions in (62) one finally obtains eq. (19), thereby showing the 
intimate relationships between both schemes. 

On the other hand, Weinstein and coworkers [55] start from the fully 
antisymmetrized product of the total wave function 

= A,m%(rs;R ,Rm)%(rm;Rm,R,) 

and consider the solute and solvent wave function as individually antisymmetrized 
group functions. The equation to be solved is then the full SchrOdinger equation: 

H IW(r~,rm;X)) = E IW(r~,r~;X)). (65) 

Then the total energy of the system is written in terms of the self-energies of the 
component groups in the complex, together with an interaction term: 

g = (%(rs;X) ln~(rs,Rs)l%(rs;X)) + (ui'm(r,~;X) ln,~(rm, R,~)l~,~(rm;X)) 

+ (~/(r~,rm;X)IW(r~,rr~;X)lq'(rs,rm;X)). (66) 

The interaction between the quantum and its surroundings, e.g. protein environment, 
is calculated with an iterative computational scheme developed on the basis of 
McWeeny's variation-perturbation theory of group functions. The iterative procedure 
neglects exchange interactions between the two subsystems; furthermore, the 
perturbation is represented by linear terms in the Hamiltonian, unlike the formulation 
presented by us in the GSCRF theory. 

2.6. PROTEIN'S ACTIVE SITE MODEL 

Chemical events in enzyme catalyzed reactions usually take place in small 
volumes (active site) compared to the full extent of the biosystem. Main and side 
chain functional groups, e.g. imidazole ring of histidines, together with other molecules 
provide the material basis for the chemical events to take place. To construct 
molecular models for the active site components, bonds are broken in order to keep 
the size of the quantum system within reasonable bounds. The dangling bonds are 
usually saturated with hydrogen atoms. This procedure is not fully satisfactory 
when a C-C bond is replaced by a C-H bond. Actually, embedding a model 
molecular system in its enzyme environment is not yet a solved problem. Depending 
on the level of theory, i.e. a semiempirical or an ab initio MO scheme, the embedding 
problem may admit different solutions. 
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The theory and procedure discussed until now apply to fixed nuclear coordinates. 
In the following section, we discuss methods used for treating nuclear movements. 

3. Classical statistical mechanical scheme 

The dynamics in the X-space, namely, the configurational space, is normally 
assumed to be driven at the classical mechanical level. Once the quantum mechanics 
of electronic motion has been solved, the nuclei are submitted to intra- and inter- 
molecular potentials. The total Hamiltonian H is written as a sum of  molecular 
Hamiltonians (H,, and H,) and the intermolecular interactions Vm,: 

H(X,P) = Hm(Pm,Rm)+ Hs(Ps,Rs)+ Vms(Rm,Rs) , (67) 

where P is the linear momentum in Cartesian coordinates of the ensemble of particles; 
Pm and P, identify the momenta associated to each subsystem. The solute subsystem, 
in the classical statistical mechanical treatment, may contain a number of molecules 
larger than those entering in the quantum subsystem treated in the preceding section. 
To simplify notation, and without loss of generality, the solvent molecules are taken 
as atoms. Then, 

where Rmi is the position vector and P~. is the canonically conjugated momentum 
of the ith solvent atom; H(P,~i) is the kinetic energy. The atoms interact via the total 
charge densities; V(R,,,i, R,,,~) is the interatomic potential between solvent atoms. 

The solute is a polyatomic system characterized by the intramolecular potential 
V(R~). The solute Hamiltonian in the laboratory coordinate frame can be cast into 
a matrix form as follows: 

H s = (1 / 2)Ps +. M -1- Ps + V(Rs). (68) 

M is the mass diagonal matrix, M -1 its inverse; PJ  is the row vector obtained by 
Hermitian conjugation of the column vector Ps- The potential V(Rs) represents the 
force field of the solute. 

The solute-solvent  interaction Vms is represented as a pairwise potential 
energy function: 

N m N, 

V,,~=~ y V(IR,~-R,~]) ,  (69) 
i=1 j=l 

where Nr,, and N s are the number of atoms in the solvent and solute, respectively. 
As discussed in section 2, V(IRmi-Rs~l)contains exchange repulsive terms, 
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Van der Waals attractive interactions and electrostatic interaction terms. The dependence 
of  this potential function with the intemal geometry of the solute is neglected in 
standard treatments. It is usually assumed that the solute is found at its equilibrium 
nuclear configuration when V( I R,,, i - R,i I) is either calculated from ab initio quantum 
chemical calculations, or fitted from experimental data. 

The problem resides in the construction of the time evolution equation for the 
dynamical variables of  the system of interest embedded in its surroundings. One of 
its results is the trajectory X(t) for the particles of  the subsystem. To obtain such 
equations, a projection technique applied to the Liouville equation for the full 
system leads to the formal equations. 

The time evolution of  the dynamical variables is controlled by the Liouvillian 
superoperator iL. Let A = (A1, A2 . . . .  ) be a row vector gathering the dynamical 
variables of our system. According to classical statistical mechanics, the equation 
of  motion is given by the Liouville equation: 

d A(t) / dt  = fl(t) = iL(t)A(t), (70) 

where the Liouvillian operator is given by: 

iL(t) = ~ (~H/~P k )~9[ ] / ~Rk - ~ (~H/~R k )~9[ ] ] ~)Pk; 
k k 

(71) 

the sum over k goes over the 3N degrees of freedom including both the solute and 
its surroundings. From this definition, it is obvious that the Liouvillian can be 
written in a way similar to the Hamiltonian, i.e.: 

iL = iL,, + iLs + iLms. (72) 

The interaction Liouvillian acquires a simple form: 

i j 

(73) 

describing the coupling between the solvent and solute, at time t, in terms of forces. 
In molecular dynamics simulations, the fundamental dynamical variables are 

the coordinates and canonically conjugated moments. The time evolution of  the pdf 
(probability distribution func t ion) f (F) ,  where F is a point in phase space at 
time t, i.e. F=(Pml,Prn 2 ..... Rm1,Rm2 ..... P~I,P~2 ..... Rsl,Rs2 .... ), is described by the 
Liouville equation: 

~f / ~ t = - i L  f ( r , t ) .  (74) 
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The formal solution is f( t)  = e x p ( - i L  t)f(F,  0). The initial condition is taken 
to be an ensemble in thermal equilibrium which, for a number of situations of  
chemical interest, is represented by the canonical distribution: 

f ( F ,  0) = f ( F  o) = exp(-flH) / .[ d r  o exp(-flH), (75) 

with fl = 1]kaT; k~ stands for the Boltzmann constant and T is the absolute temperature. 
This distribution function is used to carry out the statistical averages ( ( . . . ) )  in 
what follows. 

The first problem faced is the construction of  an effective pdf with which 
thermal averages could be carried out for the subsystem of  interest. This latter may 
be a rather large system if only classical mechanical degrees of freedom are considered. 
Such is the case in molecular dynamics simulations of liquids and biomolecules. 

3.1. PROJECTED EQUATION OF MOTION 

For a theory of solvent effects on a given subsystem, it is important to define 
its reduced (effective) pdf, f~(F,). This can be achieved by using the theory of 
projection operators [9]. The operator projecting onto the dynamical variable space 
of the subsystem of interest can be defined as:fs(F~, t) = fro(Fro, 0)~dFmf(F, t) = P f ;  
the density for the subsystem m is obtained as:f,,,(F,,,, t) = (1 - P) f (F ,  t). Multiplying 
eq. (74), in turn, by P and the projection operator for the orthogonal complement 
Q = 1 - P, two differential equations are obtained. Solving the one for f~(F~, t) 
first, and introducing this solution into the one for f,(F,, t), the density of the 
subsystem s can be obtained as a solution of the master equation: 

0fs (Is,  t) / 0t = iPLP f (T,  t) + iPLeiOLtf(F, 0) + J" du iPLeiQLUQLp f (F ,  t -  u). (76) 

This equation describes the time evolution of the projected densityfs(Fs, t). The first 
term in (76) evolves in the subspace of the s-system; the second term acts as a force 
produced by the evolution in the m-system which has a projection onto the s- 
system; the last term has a non-Markovian character, as can be seen from the 
memory kernel iPLeIQL"QLP. 

In principle, eq. (76) solves the problem of finding a projected pdf. As a 
result of the partitioning accomplished above, an effective Liouvillian can be written, 

(iLs) m = iL s + i(L,~)m + iL,~, (77) 

where i(L,,~),,, describe the conservative force effects between both subsystems, 
and iLnc stands for the non-conservative effects. This latter factor is neglected in 
standard treatments and the corresponding Liouvillian (iLs) m is written as if-.s. 

It is a commonly found situation that the solvent molecules in a neighborhood 
of  the solute are strongly perturbed by it. The subsystem of  interest is therefore 



160 O. Tapia, Formalisms of solvent effect theories 

defined so as to include sufficient solvent molecules in the simulation. This extended 
system is usually referred to as cybotaxis. In this way, the correlations between this 
redefined subsystem and the remainder may be weak enough to neglect them. The 
effective Liouvillian iLs describes this latter type of subsystem. Still, the problem 
remains as to where the border should be drawn. 

The projection operator technique is also used for evaluating the dynamical 
variables of the cybotaxis. In order to proceed, it is necessary to define a scalar 
product among linearly independent dynamical variables. One useful definition is 
via a correlation function matrix between two vector variables, say A and B: 

(A(t)B(O))  = f dr '0f(F o)A(t)B + (0) = ( A(t), B + (0)). (78) 

In terms of matrix elements, this equation reads: 

(A i (t)Bj (0)) = f dFof(F o)A i (t)(t)B~ (0) = ( A i(t), B~ (0)); (79) 

as usual, the star indicates complex conjugation. The last identity is a commonly 
used notation to indicate a scalar product. 

The time evolution of the momentum variables for the subsystem P, are 
obtained after introducing a projection operator for the variables of interest into the 
global Liouville eq. (76): 

Ps =( iLPs(O) ,P+(O)) (Ps(O) ,P+O))- lP( t )+Fs( t )+fd t 'dP( t - t ' )P( t ' )  • (80) 

The first term is nothing but the fully projected part of the dynamics iPLPP(t) ,  the 
second term, F,(t)  = iPLQeIQLtp(0), is a stochastic force put up by the coupling of 
the system of interest with the remaining system, and the third term is another way 
of writing the non-Markovian effects. 

The autocorrelation matrix of the stochastic force F~(t) is related to the kernel 
of the non-Markovian term by: 

Os (t) = (F  s (t), F + (0))(P s (0), P+ (0)) -1 , (81) 

which is the second fluctuation-dissipation theorem. The time integral of ~ ( t )  is 
a generalized friction function: 

= f d t ' ~ ( t -  t'). (82) y(t) 

Approximate time evolution equations for the dynamical variables of  the 
system of interest that are used in molecular dynamics simulations can now be 
obtained. If the total Liouvillian is replaced by iL, in eq. (80) and use of eqs. (71) 
and (73), a generalized Langevin equation follows: 

i~s = -OV(Rs  ) ] ORs - O(Vrns )m / ORs + Fs(t) + f dt" dO(t - t')Ps(t" ). (83) 
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The first term describes the intramolecular force field, the second one is important 
if the medium Surrounding the subsystem of interest is structured: such a situation 
is met in enzyme's active site simulation (see below); otherwise, this term cancels 
out. The stochastic forces and memory term are the subject of particular modelizations. 

Equation (83) is the fundamental equation behind molecular dynamics simulation 
of small systems immersed in a thermal bath. 

3.1.1. Force fields 

The potential energy function V(Rs) describes the interactions between the 
atoms in the system of interest. For a protein or nucleic acid, the potential is 
composed of terms representing covalent bond stretching, bond angle bending, 
quadratic dihedral bending which takes care of out-of-plane and out-of-tetrahedral 
configuration motion, sinusoidal dihedral torsion, interatomic repulsive forces and 
Van der Waals attractive interactions which make up for the Lennard-Jones potential 
used in normal liquid simulations, and Coulomb interactions. Empirical parameter 
sets have been developed and are now embodied in Rehovot (M. Levitt), Harvard 
(CHARMM) [18], Groningen (GROMOS) [19] and AMBER [24] computer programs. 

Water-water potential functions have been reported from different laboratories. 
The procedure leads either to analytic functions fitted to empirical data, e.g. SPC 
(single point charge) [20] and TIPS (transferable intermolecular potential functions) 
family [21], or to ab initio quantum chemical calculations, e.g. Clementi's MCY 
potential [22]. At this point, it is interesting to examine the performance of the 
MCY potential. This water model has been extensively used in the literature. Rice 
and coworkers have tested the accuracy of water-water potentials [56-59]. Predictions 
of densities, lattice energies and lattice geometries of the proton ordered ices have 
been used to test this potential. The MCY potential predicts the correct ice lattice 
structures but not their density. Frequency-dependent properties have also been 
examined. As pointed out by Beveridge [60], excellent agreement is obtained with 
experiments on the oxygen-oxygen radial distribution function. The model fails to 
give reasonable pressure. In a recent release of this potential (CPC model), this 
drawback has been overcome. Three-body interactions have been computed and 
used in MC simulations by Clementi and Corongiu [61]. Later, fourth-body interactions 
were included [62]. Improvements in the oxygen-oxygen radial distribution function 
and enthalpy have been reported. Computer simulations with the MCY potential of 
the dielectric constant of water have been reported by Neumann [63]. 

3.1.2. Electric field of water 

Colonna et al. [64] have recently studied the modelling of the electric field 
of water obtained from accurate SCF wave functions. Model representations are 
constructed with the distributed multipole approach [65-71] and effective point 
charges. Benchmark computations with extended basis sets were made for the 
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dipole, the quadrupole and the octupole moments of a water molecule, together with 
the electric field on several grids around it. Comparisons were made with fields 
obtained from standard basis sets (6-31G, 6-31G °, 6-31G**, 3-21G, 3-21G* and the 
minimal basis set STO-3G) and point charge models commonly used in molecular 
simulations of water, namely, TIP3P [72], ST2 [73], SPC [20], TIP4P [72], Kollman's 
5-charges [75], Dacre's model [74], MCY [22] and CPC [76] models. 

This theoretical study showed that at 1/~ distance, TIP3P [72], ST2 [73] 
and SPC [20] model charges yield a rather poor fit to the reference field. TIP4P [72] 
and one of Kollman's 5-charge models [75] are somewhat better. Dacre's 
representation [74] yields results that are within acceptable bounds to qualify it as 
accurate. MCY [22] charges, as expected, do not reproduce the field correctly, 
while the more recent CPC model [76], which is designed to incorporate polarization 
effects explicitly, works well. 

From a more general perspective, modelling the electric field outside an 
anisotropic charge density basically defining the active site (cybotaxis) is a problem 
of current interest both in classical molecular dynamics and in microscopic quantum 
chemical theories of solvent effects. In the past, electrostatic interactions between 
highly charged species have been represented with rough and sometimes unrealistic 
dielectric models (for a review, see [77]) that would fail to describe the anisotropic 
response of the microscopic polarizable media. An adequate description of interactions 
between ions, zwitterions, highly polar molecules, proteins and other types of 
biomacromolecules requires a proper handling of reaction field effects. In principle, 
such effects can be rigorously incorporated in MD simulations by using analytical 
first- and second-energy derivatives, which have recently been reported by us for 
the polarization model of many-body interactions of molecular aggregates [78]. 
Bearing in mind that it is the electric field which is the source of polarization, its 
accurate determination is enforced both in classical and quantum chemical contexts. 

3.2. ACTIVE SITE MODELS 

The theory of solvent effects is constructed on a spatially localized model for 
the events of interest. By such techniques, as it was illustrated in the quantum 
mechanical section, only a small part of the system is included in the explicit 
simulation and the effects of the remainder of the system are treated implicitly. 
Equation (83) reflects this idea. 

For liquids, Adelman, Karplus, McCammon and coworkers [79-83] have 
proposed a method for simulating a localized region and replacing distant atoms by 
a suitably constructed boundary, including a stochastic heat bath. Warshel's surface 
constraint compressible dipole model pioneered this type of approach [84]. Basically, 
the system is partitioned into a reactant subsystem and a boundary or reservoir 
region. The former is further partitioned into a reaction region and a buffer region. 
The molecules in the buffer are treated as Langevin particles and, in the reaction 
region, they are simulated by standard molecular dynamics. The reservoir provides 
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a static force field that helps ensure that correct structural and dynamic properties 
will be maintained within the reaction zone. 

This type of approach has been extended to treat active site dynamics of 
enzymes by us and several other authors [85-87]. 

3.3. MOLECULAR DYNAMICS WITH POLARIZATION FIELDS 

Molecular dynamics simulations including polarization require, in addition to 
standard terms in the potential energy function, a modified expression for the 
electrostatic interaction including reaction field (polarization) effects. This issue 
has been thoroughly discussed by Angy~n et al. in a recent communication [78]. 

In the microscopic approach, the total electrostatic energy for a system formed 
by a set of point charges (Q) and polarizabilities (a) is given by: 

U = 1 ~ ~_~ QiQjT(Ri_ R j ) - 1  ~_~ ~_. QiT(Ri_ Rj). p( R j). (84) 
i j i j 

p(R)) is the induced dipole moment at the point R) and the Coulomb kernels have 
already been defined in section 2. Note that self-energy terms are avoided in the 
summations by taking the corresponding kernels equal to zero; this convention 
facilitates practical computations. 

In eq. (84), the first term is the direct electrostatic interaction between bare 
charges and the second term is the induction energy. This expression can be recast 
in terms of the field produces by the charges e(Ri) at R i, and the electric field of 
the induced dipoles, rc(Rj)= -VR;FI(R/) is the reaction field: 

e( R i ) = - ~  QjVR, T(R~ - R j ) = - ~  QjT( R i - Rj) (85) 

and J J 
~( Rj ) = -VR, FI(Rj) = ~ T( R, - Rj ) . p( gi ), (86) 

j~i 

since the induced dipoles are determined by eq. (16) translated into a discrete 
representation, 

P(Ri) = a i (e(Ri) + ~.. T ( R  i - R i ) .  p(R i)), (87) 

and after introducing the supermatrix representation of section 2.3, one obtains 
eq. (38), namely, 

p = [ 1 - a . T ]  -1.or-e= a . [ 1 - o t . T ]  - l . e =  A-e. 

The induction energy may now be written either in terms of the permanent 
field interacting with the induced dipoles or as a bilinear form in the permanent 
field including the many-body polarizability matrix: 
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Uind = 1 Z p ( R i )  "e(Ri ) =_ l~.~ ~e (R i ) .  A(RI,Rj). e(Ri), (88) 2 2 i i j 

where A(Ri, Rj) is an element of the supermatrix of many-body polarizabilities. 
The calculation of the force acting at the ith nucleus is obtained after taking 

the gradient: 

F(Ri) = -VR, U = Qje(R i ) + ½ (p(Ri) .  VR~ e(R i ) + Qj H(RI) + ~ e(Rj ). VR, p(Rj ). (89) 
J 

The problem is now shifted to the calculation of the gradient of the induced dipole. 
This can be done as shown by Angy~in et al. by noting that the derivative of the 
supermatrix A with respect to an arbitrary coordinate x can be written as: 

~A/~x = A(~T/0x)A. (90) 

Then it can be shown that 

VR' p(Rj)=-A(Ri 'RJ)"  ( k VR~ T(Ri -R~)Qk +~'k ~[VR't VR' T(RIRy)] 

• A(R), R k). T(R k - R t)Qt) 

+ ~.~A(Ri,Rj) ' (]~VRiT(Rj-Rk)Q~ + ~_~ ~.~[VR, VR, T(Ri -Rj )]  
j k l 

• A(Rj, Rk). T(R k -Rt)Q~I. (91) 

The first terms in both sums are the electrostatic field gradients of the permanent 
charges at points Rj and R k, respectively. The second terms are the field gradients 
created by induced dipole moments. Thus, the dipole moment derivative can be 
recast into: 

VR, p( R) ) : -A(  R i, Rj ) .(VRj e( Rj ) + VR~ H( Rj )) 

+ ~., a ( e  i , R~ ). (VRk T(R k - Rj )Qj - [VR~ VR~ T(R k - R j)]. p(Rj)). (92) 
k 

This result is based upon the self-consistency of eq. (39) and it does not necessarily 
hold for approximately calculated induced moments. 

Interestingly, when first-order induced moments are used, i.e. p(l)(Ri) = aie(Ri), 
terms involving derivatives of the many-body polarization matrix vanish and A(Ri, R j) 
is just the polarizability tensor at Ri: A(R i, Rj) = (~ijai, and eq. (91) becomes 

VR, p(1) ( Rj ) = -Sij o~j . VR~ e( Rj ) + aiVR, T( R i -R j )Qj .  (93) 
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The total force in eq. (89) can be obtained if one substitutes eq. (92) into (89). 
A simple form can be obtained if one uses the total electric field, namely 
E(Ri) = e(Ri) + 1-I(Rj), and its field gradient: 

F(RI) = -VR, U = QiE(Ri)+ P(Ri). VR, E(RI). 

In the particular case of first-order induced dipoles, one obtains: 

(94) 

F(O(Ri) = QIE(Ri)+ pO)(Ri). VR, e(Ri). (95) 

Second-order derivatives have also been obtained by AngUin et al. [78]. 
Finally, we give the expression for the induction energy in first-order 

approximation: 

1 x -~ ( 1 ) .  R ~ 1 7,~-~ • (96) U i n a = - 7 ~ P  t i)'e(Ri)= ~QiQjT(R i -R j ) . a j  T(Rj-Ri).  
i i j 

In this case, the total electrostatic energy is given by 

1 U= 7 ~.~ ~QiQjT(Ri -Rj )+ 1 ~ Q j r ( R , - R j ) . %  . r ( R j - R , ) .  
i j i j 

The interaction energy without including charging effects reads: 

(97) 

v,.,  = Z Q ,  QT(R, - Rj)+ Z Q ,  Q T ( R , -  R ) .  % . r(Rj - R,). (98) 
i<j i;tj 

In all summations over centers, self-energy terms are set equal to zero. 
Polarization forces have been implemented in CHARMM by F. Colonna. His 

simulation of simple model systems shows energy conservation if the self-consistent 
approach is used. The use of non-converging induced dipoles leads to trajectories 
where energy is not conserved. Interestingly, the first-order approximation works 
well in the sense that there is energy conservation during the MD simulation [78]. 

3.4. MICROSCOPIC POLARIZATION EFFECTS: SIMPLE ANALYTICAL MODEl,S 

Polarization effects at the microscopic level are not reproducible by standard 
dielectric functions. This can be appreciated when the theory is applied to simple 
models that can be analytically solved. In fig. 1, two model situations are presented; 
they were discussed previously by Buckingham [88,89]. 

For the case depicted in fig. l(a), eq. (98) can easily be specialized, giving 
for the total electrostatic energy the formula: 

EI2 = (ql qE/Q) (1-sgn(ql q2)32 a/Q3),  (99) 

which is the equation given in ref. [88]. 
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Fig. 1.Buckingham's model illustrating microscopic 
polarization effects, a represents polarizability; d is 
the distance between a charge and the polarizable 
center; Q is the distance between charges ql and q2. 

Thus, the attractive interaction between oppositely charged particles is enhanced, 
contrary to the expected result if a standard dielectric function were used, while the 
repulsive interaction is decreased by the polarizability, in agreement with the use 
of dielectric functions. 

Let us calculate the forces between the charges as specified for the cases 
depicted in fig. l(b). Since the procedure has its own interest, it will be presented 
in some detail. 

First, we calculate Urf  , the potential energy in a reaction field. For a set of 
point charges q as discussed in the preceding section, this energy is: 

Urf = Z qi H ( Q i ) ,  (100)  
i 

where rI(Qi) is the reaction field potential at point Qi. Consider now the charge pair 
ql and q: at a distance Q12 and calculated the force between them: 

- S u ~ / S Q l z  = - { ( S u r f / ~ 1  )(SQ~ / 5 Q ~ z )  + (6u~f/SQz )(~z/SQlz)}, 

which can be recast in terms of the reaction field 7r(Q): 

(101) 

- (  ~Urf / &212 ) = ql ~r(Q] ) - q2 zr(Q2 ) = Frf (12). (102) 

Specializing this equation to describe the case of fig. l(b), one obtains after 
some simple algebraic rearrangements: 

Frf(12) = Frf(self) + Frf(int), (103) 

where 
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and 

F~f (self) = 2a(q  2 + q2){1 / d 5 - 1 / (Q + d) 5 } 

Frf (int) = (qlq2)/Q2 {(4 a ] d 3)(1 + 2d/Q + (d/Q) 2)(1 + d/Q) -5 }. 

(lO4) 

(1o5) 

Now, by adding the in vacuo forces and neglecting the self-reaction force, one 
finally obtains: 

F12 = ((qlq2)/Q2){1 + sgn(qlq2)(40~/d3)(1 + 2d/O +(d/a)Z)(1 + d/Q)-5}, (106) 

which is the final formula. 
Equation (106) with sgn(qlq2) = - 1  has to be compared with Buckingham's 

equation for ql = -q2 = q, which looks like: 

F12 = ((qlq2)/Q2){1 - (4 a/d2Q)(1 + 2d/Q)(1 + d/Q) -5 }, (107) 

while for ql = q2 = q, it reads: 

F12 = ((qlq2)/Q2){1 + (4ct/d2Q)(1 + 2d/Q)(1 + d/Q)-5}, (108) 

Equations (107) and (108) are slightly different when compared to those 
obtained from eq. (106). The difference stems from the fact that once the interaction 
energy U12 is calculated, the field produced by, say ql, at the place the charge q2 
occupies, follows from: 

E l 2  = lim - (1/q2)(6U12/3Q). (109) 
q2=O 

Thus, the test charge does not alter the field created by the source ql. The reaction 
field approach, on the contrary, includes the perturbing effects of the "test" charge. 
The point is that both schemes yield the same qualitative effects. 

The force strength between two charges of opposite sign decreases according 
to eq. (106) where sgn(qlq2)= -1  or eq. (107), in agreement with the standard 
dielectric theory for macroscopic bodies, while the force strength between two 
charges of equal sign increases in the presence of polarizable matter, which 
is a result that cannot be reproduced with the standard models of dielectric 
continuum. 

4. Solvent effect studies. Selected examples 

Progress in computer technology has profoundly influenced the field of solvent 
effects. From small solutes up to proteins in water, a number of studies have been 
reported in the literature. 
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4.1. SOLVENT EFFECTS ON MOLECULAR PROPERTIES 

4.1.1. Monte Carlo simulations 

Monte Carlo simulation techniques have been extensively used to study solvent 
effects on molecular properties and equilibrium points. Jorgensen has summarized 
theoretical work of condensed-phase effects on conformational equilibria [90]. 

Monte Carlo studies of a dilute aqueous solution of benzene have been reported 
by Beveridge and coworkers [60] and by Linse et al. [91]. Intermolecular pairwise 
potential functions determined from quantum mechanical calculations were used; 
for water-water interactions, both groups have used the pairwise Matsuoka-Clementi- 
Yoshimine potential. Interesting solvation patterns around benzene have been found. 

Solvent effects on the relative energies for the planar and perpendicular allyl 
cations in liquid hydrogen fluoride have been studied with MC simulations. The 
intermolecular potential functions describing the solute-solvent interactions have 
been obtained from ab initio molecular orbital calculations with a 4-31G basis set. 
The conformers were represented by different charge distributions but the same 
Lennard-Jones parameters. The solvent-solvent interactions were described by a 
function of the TIPS form including one Lennard-Jones term and three charged 
sites for each hydrogen fluoride monomer [92]. Significant differences in solvation 
are detected. The more localized (perpendicular) conformer is found to be better 
solvated, in agreement with traditional notions of ion solvation. 

Clementi and coworkers have been deriving intermolecular potentials from ab 
initio computations and using these potentials in statistical mechanical computer 
experiments on pure solvents and solutions, the goal being the derivation of an 
ordered set of approximations leading to an increasingly realistic description of 
water and aqueous solutions. Extensive work on solvation of biomolecules has been 
carried out [93-96] by this group. The reader is referred to the MOTECC-90 book, 
edited by Clementi (ESCOM, Leiden). 

Free energy simulations using the Metropolis MC method and a coupling 
parameter approach with umbrella sampling have been performed for a number of 
systems ranging from liquid water to chemical reaction in solution. Applications to 
the study of liquid water, hydrophobic interactions and solvent effects on conformational 
stability have been reported by Beveridge et al. [97]. The effect of hydration on the 
torsional energy surface of butane using statistical perturbation theory has been 
studied by Jorgensen and Buckner [98]. The methodology therein proposed is shown 
to yield results with high precision and to have significant advantages over umbrella 
sampling. 

4.1.2. Molecular dynamics simulations 

Dynamics of proteins and nucleic acids and their solvent surroundings have 
been reviewed recently by McCammon and Harvey [99]. Van Gunsteren [100] has 
surveyed methods for simulation of molecular systems on a computer. Free energy 
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perturbation calculations have become a standard technique to study binding and 
catalysis after site directed mutagenesis, relative binding free energies of different 
substrates onto the same receptor, and other applications [101-103]. 

Solvent effects on biochemical solutes studied by MD techniques have also 
been discussed by Jorgensen. In this section, recent studies on protein solvation are 
examined. 

Only a few MD simulations of proteins in aqueous solution have been carded 
out. Such studies provide data for examining conformational differences between 
crystal structures and solution structures [19,104-108].  Thus, AhlstrOm et al. have 
studied parvalbumine in vacuo and in aqueous solution. Parvalbumine is a Ca ÷2 
binding protein. Simulations in vacuo of Ca÷Z-free protein were also reported. 
Considerable structural changes were detected relative to the initial coordinate in 
the two in vacuo simulations. Water surroundings, although they help to hold the 
structure in a neighborhood of the crystallographic structure a little better, are not 
sufficient to keep a correct pattern. It is not clear from the analysis presented by 
these authors whether their results are mere artifacts deriving from the potential 
function used or if the results are a fair representation of the protein behavior in 
solution. 

Simulations of BFFI (bovine pancreatic trypsin inhibitor) in Van der Waals 
solvents have been reported [105,106]; the density and molecular size were chosen 
to simulate those of water. More realistic water representations were used in further 
simulations [19,107, 108]. Levitt and Sharon have recently reported accurate simulations 
of protein dynamics in solution for BPTI [ 109]. Avian pancreatic polypeptide hormone 
in crystal and in aqueous solution have been reported by Kruger [110]. These 
studies tend to indicate that the calculations in vacuo represent fairly correctly the 
motion of the protein core, while exposed side chains represent more strongly 
solvent effects. 

A 500-picosecond MD simulation in water of the Mana l  --) 2Mana  glycosidic 
linkage present in Asn-linked oligomannose-type structures on glycoproteins is 
reported in [111]. Significant dampening of the molecular fluctuations was found 
when comparisons of in vacuo and in water simulations were made. The in-water 
simulation showed only occasional short-lived deviations from the minimum energy 
conformation; this result is more consistent with the carbohydrate "breathing" mode 
rather than flexiblity of the global structure. Recently, a simulation covering 100 ps 
at 25 °C of the third domain of silver pheasant ovomucoids in aqueous solution has 
been reported [112]. 

Collective motions of secondary and supersecondary structures in proteins 
are important for understanding functionality. A unique collective motion has been 
detected by molecular dynamics simulations of the carboxy terminal fragment (CTF) 
of  the L7/L12 ribosomal protein [113]. In the crystal state, the unit cell embodies 
eight units of  CTF. A dimer has been proposed as a functional significant structure. 
MD simulations of the dimer [114] and of CTF immersed in a bath of 2352 SPC 
water molecules, carried out in our laboratory, have shown that protein collective 
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motions are not damped [115,116]. For this particular case, the simulations in 
vacuo are good enough for reproducing structural features and dynamical behavior 
of the whole protein. 

Since the number of systems studied so far is rather small, general conclusions 
concerning model water effects on protein structural and dynamic properties cannot 
be drawn. 

4.2. SOLVENT EFFECTS ON CHEMICAL REACTIONS 

A Brownian reactive dynamics method has been developed by McCammon 
and coworkers [101] to calculate the rate at which reactant molecules diffusing in 
solution would collide with appropriate orientations for a reaction to take place. The 
method has been applied to study the reaction rate of superoxide dismutase. 

A significant application of computer simulation techniques to solvent effects 
evaluation is the study of nucleophilic addition and the bimolecular nucleophilic 
substitution SN 2 reactions. 

The SN2 reaction, X-+ RY---) XR + Y-, has been simulated with the MC 
equilibrium method by Jorgensen and coworkers [117, 118]. The procedure used by 
these authors involves three steps: (i) the lowest energy reaction path is determined 
for the in vacuo system by using ab initio molecular orbital calculations; (ii) 
intermolecular potential functions are obtained to describe the interactions between 
the substrate and a solvent molecule; these potentials depend on the internal structure 
of the substrate; (iii) MC simulations are carried out to determine the free energy 
profile for the reaction in solution. This is a heavy computational job, since importance 
sampling methods are required to explore all values of the reaction coordinate. A 
similar technique was used by Madura and Jorgensen [119] in simulating the 
nucleophilic addition of the hydroxide ion to formaldehyde in the gas phase and in 
aqueous solution. 

An integral equation approach to obtain free energy surfaces was reported by 
Rossky and coworkers [120] in the study of the aqueous phase SN2 reaction of 
chloride with methyl chloride. It was shown that in the limiting case of fast reaction 
dynamics and rapid charge transfer near the transition state, the correction to the 
TS theory rate constant can be estimated within the integral equation framework. 

Molecular dynamics simulations of the SN2-type reaction were reported by 
Bergsma et al. [121]. The technique is used to explore the role of polar solvent 
dynamics and configurations in modulating the reaction trajectories and the ratio (k) 
between the true value of the rate constant k and the one obtained from the transition 
state theory k "rsa'. Important results concerning solvent effects on the dynamics are 
obtained. 

In a more chemical vein, Tapia and coworkers [122-124] have studied hydration 
effects for the rate limiting step of the acid catalyzed rearrangement of a-acetylenic 
alcohol to a, r-unsaturated carbonyl compounds. Water intervenes in the reaction 
mechanism. Ab initio MO studies of the energy hypersurface were carried out at 
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Fig. 2. Schematic representation of the reactive hypersurface for the rate limiting step 
in the acid catalyzed rearrangement of a-acetylenic alcohol to ct, fl-unsaturated carbonyl 
compounds. Note that the reactant in the RLS is a saddle point along the solvation 
geodesic. As was shown in ref. [124], solvent water molecules occupy solvation sites one 
and two in a way opening the reactive channel. This work suggests one of the difficulties 
a theoretical following of a chemical reaction in water may encounter: the curvature of 
the reactive hypersurface may crucially depend upon many-body solvation effects. 

a 4-31G basis set level [123]. The topography of  this energy hypersurface presents 
two solvation sites for the protonated alcohol in the reactant basin and two for the 
protonated allenol in the product basin; the solvation minima of the protonated 
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alcohol and allenol are connected via saddle points, which are schematically represented 
in fig. 2. The surprising result is that the reactant and the product of the RLS (rate 
limiting step) are also saddle points of first order in the supermolecule hypersurface. 
MC simulations [ 124] using the stationary point structures on the energy hypersurface 
show that the solvation sites are occupied by solvent water molecules, and due to 
solvent caging effects, the reactant and product of the RLS in solution become 
stable species. Mechanistically, the transition state for the RLS derives from the 
solvated reactant by the jump of one solvent molecule towards its nucleophilic 
center. Since the unrelaxed solvation shell is less efficient than the equilibrium one, 
the TS for this reaction is better described as a poorly solvated saddle point structure: 
relaxation of this shell opens the channel leading to final products. This set of 
studies illustrates the difficulties simulation methods will encounter when water 
takes an active part in the molecular mechanism. 

4.3. INTEGRATED QUANTUM/STATISTICAL MECHANICS STUDIES 

In the MC and molecular dynamics studies overviewed above, the key issue 
of incorporating solvent effects in the quantum mechanical calculation has not been 
satisfactorily solved. Warshel's empirical valence bond approach, Van Duijnen's 
direct reaction field method [48], and Tapia's ISCRF theory [25], by including 
them, are steps forward in this direction. Although the key theoretical issue cannot 
be considered satisfactorily solved, the applications made are most interesting. 

The energies and dynamics of the SN2 class of reactions in aqueous solution 
have been studied by a combination of the empirical valence-bond method and a 
free energy perturbation technique. The solvent is represented by a surface constrained 
all-atom solvent (SCAAS) model, and many-body interactions are taken into account 
with a solvent parameter set that includes atomic polarizabilities [125]. In this work, 
activation free energies for the X- + CH3Z ~ XCH 3 + Z- reactions are computed 
and the general relationship between the reaction free energies and the solvent 
contribution to the activation free energies are examined. The dynamical aspects of 
the SN~ charge transfer reaction are explored by propagating trajectories downhill 
from the transition state by using linear response theory. The simulations suggest 
solvent fluctuations play a central role in driving the system towards the transition 
state; the relaxation time for the reactive fluctuations is determined by both the 
polarization time of  the solute dipole moment and the dielectric relaxation time of 
the solvent. Effects of  solute-solvent  coupling and solvent saturation effects on 
solvation dynamics of  charge transfer reactions were pursued in another work by 
Hwang et al. [126]. 

Evaluation of free energies in genetically modified proteins was made by 
Warshel et al. [ 127]. A combination of the EVB method and free energy perturbation 
approach similar to the one described above was applied to study the activity of 
genetically modified enzymes: trypsin and subtilisin. The importance of dynamics 
aspects was sensed by using autocorrelation functions of the protein reaction field 
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on the reacting substrate. Important free energy perturbation calculations of  the 
catalytic effects associated with substitutions of the active site calcium ion in 
staphylococcal nuclease were reported by /~qvist and Warshel [128,129]. This 
procedure shows the enormous power simulation techniques have in helping to 
predict important biological changes in enzyme functions. 

Earlier theoretical work on charge-relay catalysis in the function of serine 
proteases has been critically evaluated by Schowen [130]. The catalytic steps for 
acylation and hydrolysis of a model ester by chymotrypsin have been studied with 
the ISCRF theory. The results are in good qualitative agreement with experimental 
facts. Since the semiempirical MO method was not calibrated to reproduce in vacuo 
properties, no quantitative agreement was reached [ 131 ]. N~ray-Szab6 [ 132-134] 
has emphasized the role of electrostatics in enzyme catalysis. Progress in recombinant 
DNA techniques has made it possible to analyze the structural bases of enzyme 
action and substrate specificity via directed replacement of residues of interest in 
a given enzyme. 

The mechanism of liver alcohol dehydrogenase (LADH) has been extensively 
studied. For a recent overview, the reader is referred to ref. [135]. Reaction field 
effects on the transition structure of model hydride transfer systems have been 
calculated at an ab initio 4-31G basis set level [135,136]. The active sites of 
enzymes are usually assumed to be designed to receive transition states for the 
reaction they catalyze. This special sort of surrounding medium effects has been 
computationally documented recently [137]. From the reaction geodesic passing 
through the transition state for hydride transfer in the pyridinium cation/methanolate 
model system, only the TS-structure could be fitted into the LADH active site. The 
normal mode analysis carried out on the TS showed an excellent agreement with 
isotropic substitution experiments [137]. Reaction field calculations on the model 
system have also been performed. For an overview of biomolecular interactions, the 
reader is referred to ref. [138]. 

An interesting solvation-desolvation effect put in evidence via MC 
simulations [139,140] has been confirmed in a quantitative structure-activity 
relationship (QSAR) study [ 141 ]. The analysis of the inhibition constants of pyrazoles, 
phenilacetamides, formylbenzylamines and acetamides acting on LADH yielded 
QSARs having a linear dependency on octanol-water  partition coefficients. One of 
the tenets of the hydride transfer hypothesis required that the water had to be 
evacuated from the active site due to substrate binding. This QSAR documents the 
solvation-desolvation process present along the mechanistic steps in LADH. 

Until now, most of the combined quantum/statistical mechanical calculations 
including realistic models of the surrounding medium have been carried out at a low 
level of  basis set representation or, in most cases, with semiempirical MO approaches. 
This trend is being changed. 

Weinstein and coworkers [55] have carried out ab initio calculations in the 
iterative computational scheme by using extended and minimal basis sets. The 
quantum motif, NH3. . .  H+. . .  H2S, models the active site residues His162 and 
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Cys25 in the low pH form of actinidin, a sulfhydryl protease. The polarization 
energy contribution from the quantum motif turned out to be negligible in comparison 
to both the unperturbed electrostatic interaction energy and to the polarization of 
the macromolecule. Not surprisingly, the polarization energy remains nearly constant 
along the proton transfer path. The calculated polarization of the quantum motif by 
the collection of point charges representing the macromolecule V ° is significantly 
increased by going from a minimal to a split valence basis set; however, addition 
of a polarization function to the latter does not produce any significant improvements 
in the calculation of the polarization energy. For this particular case, minimal and 
extended basis sets produce similar results for the electrostatic interactions between 
the unperturbed systems [55]. 

In our group, the GSCRF theory [16] has been implemented at an ab initio 
level [142]. Water-in-water calculations have probed the quality of diverse basis 
sets. The electrostatic potential ~ ( r )  is represented with sources having a permanent 
dipole moment of 2.4 D, and spherical polarizability of 1.24 A3 situated at the 
oxygen atom and zero for the hydrogen atoms. Individual water molecules with 
their respective environments included in a sphere of radius 15/~ were selected 
from an MC sample. Such a sample comprises about 460 molecules around the 
central water molecule. The permanent and reaction potentials, fields and induced 
dipole-induced-dipole interactions were calculated with a cutoff of 15/~. Statistical 
analysis was done on 60 different samples. STO-3G, 4-31G, 4-31G** and 6-31G** 
basis sets were used. Fluctuations of Mulliken populations, dipole moments, permanent 
solvent potentials, permanent electric fields, reaction potential and reaction field 
components were reported for these basis sets [142]. 

In the usual homogeneous reaction field model (e.g. in the case of cavity 
models), the reaction field energy is always stabilizing (negative). It is remarkable 
that in the present non-homogeneous reaction field model, one can also have a 
destabilizing contribution of the reaction field. This can be explained if one considers 
that the non-homogeneous distribution of the surrounding water molecules around 
a particular target may give rise to negative reaction potentials on a negatively 
charged oxygen atom [142]. 

The solvent field affects considerably the charge distribution of the water 
molecule. This is illustrated in fig. 3, where the dipole moment distribution is 
depicted. Overpolarization of the molecular charge distribution (even for the isolated 
molecules) is shown by the dipole moments obtained for the 4-31G, 4-31G** and 
the 6-31G** basis sets. The effective charges at the oxygen and hydrogen atoms in 
some cases also present extreme fluctuations [142]. 

Experimentally, the dipole moment of the water molecule in vacuo is increased 
by about 33% when it is immersed in liquid water at 25 °C. The low quality of the 
minimal STO-3G basis set is clearly displayed in the sense that only 10% increase 
is obtained. Pictorially speaking, the STO-3G charge density appears stiff with 
respect to its response against extemal fields, i.e. it has a small polarizability. The 
4-31G result is a 24% increase, the distribution peaks at 3.04 D with a large population 
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corresponding to 3.2 D; this result is unrealistic since it is the dipole moment of 
water in vacuo, namely 2.5 D. It was noted that both the 4-31G*" and 6-31G** 
results showed distributions centered around 2.8 D and 2.72 D. Very few molecules 
have dipole moments larger than 3 D. As one would have expected, the polarization 
functions are essential to describe a more realistic coupling between the solute and 
the surrounding medium [142]. Actually, the increase in dipole moment was 29.5% 
and 27% for the 4-31G** and 6-31G** basis sets, respectively. This is in fairly good 
agreement with experimental results, except for the poor in vacuo dipole moments. 
Thus, insofar as the theory of solvent effects is concerned, the numerical testing can 
be considered as satisfactory. 

5. Conclusions and perspectives 

The theory of solvent effects and some of its applications have been overviewed. 
The generalized self-consistent reaction field framework has been used to present 
a unified approach to the theory underlying the quantum chemical calculations of 
subsystems embedded in a given environment. The treatment of the configurational 
space X(t) for a subsystem coupled to a given surrounding was done in the framework 
of the statistical mechanical theory of projected equation of motions. This theory 
underlies applications of molecular dynamics simulations to the study of solvent 
and thermal bath effects on carefully defined subsystems of interest. Relationships 
have been established between different approaches used so far to calculate solvent 
effects and the general approach advocated by this reviewer. Applications to molecular 
properties in a time-independent framework have been presented. 

The embedding of a quantum subsystem into a classical one is not yet a fully 
solved problem. In a semiempirical context, pseudo atoms can be introduced at 
boundary atoms. This procedure is advocated by Ostlund in his graphics-driven 
approach presented at the WATOC-II Symposium-1990. In ab initio MO contexts, 
pseudo potential representations of the boundary atoms have been evoked by Weinstein's 
group and in our group by ./~ngy~in. To which extent the sigma core of the remaining 
protein may affect the electronic events at the active site is a matter of  debate. 

The applications described in this paper have been selected to illustrate the 
power of the solvent-effects approach to biochemical and physicochemical problems. 
The techniques are also applied in other fields. For example, molecular dynamics 
simulations are being used to study solvent effects on static and dynamic properties 
of linear and star polymers [143,144]. A generalized Langevin equation has been 
used to represent a solvent around a polymer with stochastic forces; the solution 
of this equation agrees well with corresponding MD simulations [145]. A molecular 
dynamics study of one methane molecule in a cavity of NaA zeolite has recently 
been reported [146], as well as of Na ions in an A-type zeolite framework [147]; 
simulations of alkali-silicate glasses have been made in an effort to identify composi- 
tional fluctuations which could act as precursors of phase separation [148]. Finally, 
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a molecular dynamics simulation of a model reverse micelle in an apolar solvent 
was reported by Brown and Clarke [149]. Intermolecular interaction calculations 
with the direct reaction field method have recently been reported [150]. 

There has been progress in the study of solvent effects on chemical reactions 
in liquids and reactivity in solids such as zeolites and enzymes. For carbonic anhydrase, 
recent ab initio SCF-MO calculations including the zinc cation and a model for the 
coordination shell in the enzyme have yielded a detailed molecular mechanism [ 151]. 

The full statistical mechanical approach to solvent effects on dynamic processes 
epitomized by eq. (83) provides the starting point to build up model systems and 
develop non-equilibrium statistical mechanical approaches. Non-equilibrium solvent 
effects are now the subject of intensive experimental investigations. Different blends 
of time-resolved spectroscopies are contributing to the knowledge of dynamical 
processes in liquids, solutions and bioenvironments [152,153]. The electronic 
properties of the solute system become affected by fluctuations of the solvent 
configuration X(t). Subpicosecond phenomena are involved in the response of the 
solvent to a newly created charge or dipole. The reciprocal effects can be followed 
theoretically by implementing, for instance, the generalized SCRF scheme, as shown 
in ref. [142]. Such developments have been anticipated by Warshel and coworkers 
in tfieir studies with the EVB approach. Banacky and Zajac [154,155] have derived 
the theory of particle dynamics in solvated molecular complexes. A time-dependent 
nonlinear equation of motion for the probability density of a proton in a solvated 
symmetric H-bond system was derived. Earlier work has been overviewed by the 
present author [10]. Simple models with complex formalisms have been used in 
theoretical studies of chemical dynamics [11,156-162].  

Brute force MD and MC simulations of solvent effects of the dynamics and 
static properties of proteins summarized in this work will serve as benchmark 
calculations to gauge model representations of solvent effects on biomacromolecules. 
The non-specialist reader should be warned of the limitations of present-day computer 
simulation methods. They do not give a complete answer to solvent effects. Sampling 
difficulties are always there. The application to proteins is mostly reduced to the 
study of fluctuations around a native state conformation(s). The hypothesis of broken 
ergodicity [163] is required for these methods to work. The problem of multiple 
minima is still an unsolved problem. The use of realistic dielectric models can also 
be seen as a complementary approach to represent solvent effects on biomolecules. 
Thus, in spite of all limitations, the conditions are mature for including more 
sophisticated ab initio studies into the description of time-dependent physicochemical 
phenomena. 
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